Emotion Tokens: Bridging the Gap among Multilingual Twitter Sentiment Analysis
نویسندگان
چکیده
Twitter is a microblogging service where worldwide users publish their feelings. However, sentiment analysis for Twitter messages (tweets) is regarded as a challenging problem because tweets are short and informal. In this paper, we focus on this problem by the analysis of emotion tokens, including emotion symbols (e.g. emoticons), irregular forms of words and combined punctuations. According to our observation on five million tweets, these emotion tokens are commonly used (0.47 emotion tokens per tweet). They directly express one’s emotion regardless of his language; hence become a useful signal for sentiment analysis on multilingual tweets. Firstly, emotion tokens are extracted automatically from tweets. Secondly, a graph propagation algorithm is proposed to label the tokens’ polarities. Finally, a multilingual sentiment analysis algorithm is introduced. Comparative evaluations are conducted among semantic lexicon based approach and some state-of-the-art Twitter sentiment analysis Web services, both on English and non-English tweets. Experimental results show effectiveness of the proposed algorithms.
منابع مشابه
Emotion Analysis of Twitter Data That Use Emoticons and Emoji Ideograms
Twitter is an online social networking service on which users worldwide publish their opinions on a variety of topics, discuss current issues, complain, and express many kinds of emotions. Therefore, Twitter is a rich source of data for opinion mining, sentiment and emotion analysis. This paper focuses on this issue by analysing symbols called emotion tokens, including emotion symbols (e.g. emo...
متن کاملExploring Sentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual Twitter Streams
We study subjective language in social media and create Twitter-specific lexicons via bootstrapping sentiment-bearing terms from multilingual Twitter streams. Starting with a domain-independent, highprecision sentiment lexicon and a large pool of unlabeled data, we bootstrap Twitter-specific sentiment lexicons, using a small amount of labeled data to guide the process. Our experiments on Englis...
متن کاملSentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual Twitter Streams and Exploiting Gender Language Differences on Twitter
We study subjective language in social media and create Twitter-specific lexicons via bootstrapping sentiment-bearing terms from multilingual Twitter streams. Starting with a domain-independent, highprecision sentiment lexicon and a large pool of unlabeled data, we bootstrap Twitter-specific sentiment lexicons, using a small amount of labeled data to guide the process. Our experiments on Englis...
متن کاملSentiment Analysis on Monolingual, Multilingual and Code-Switching Twitter Corpora
We address the problem of performing polarity classification on Twitter over different languages, focusing on English and Spanish, comparing three techniques: (1) a monolingual model which knows the language in which the opinion is written, (2) a monolingual model that acts based on the decision provided by a language identification tool and (3) a multilingual model trained on a multilingual da...
متن کاملText Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011